Dürre-Prognosen werden durch neue Methode noch verlässlicher

Weltweit steigt der Bedarf an Prognosen zu den Entwicklungen der Wasservorräte. Da drohende Dürren frühzeitige Präventionsmaßnahmen erfordern sind verlässliche Daten unverzichtbar. Dazu tragen Ergebnisse aus einer internationalen Forschungskooperation bei. Wissenschaftler der Universität Bonn haben durch die Kombination aus dem hydrologischen Modell WaterGAP mit GRACE-Satellitendaten die zeitlichen Veränderungen der Gesamtwasserverteilung auf den Landflächen der Erde über die vergangenen 20 Jahre genauer als alles bislang möglich war darstellt. Dazu wurden Satellitenmessungen mit hochauflösenden meteorologischen Daten kombiniert. So liefern die Karten der Wasserverteilung eine höhere Präzision. Die Ergebnisse werden nun im Journal of Geodesy als open access vorgestellt. 

Mit der neuen Methode lassen sich Modellrechnungen zu den zukünftigen Auswirkungen des Klimawandels testen, insbesondere wie die Zunahme der Temperaturen und auch Veränderungen des Niederschlags sich je nach Region auf den Wasserhaushalt auswirken werden”, sagt Prof. Dr.-Ing. Jürgen Kusche vom Institut für Geodäsie und Geoinformation der Universität Bonn. Hierzu werden Klimamodelle, die immer auch für einen Zeitraum in der Vergangenheit laufen, mit den Ergebnissen tatsächlicher Messungen verglichen. Solche Studien planen Kusche und sein Team für die nächsten Monate.

Dürren treten weitaus häufiger auf

Durch die bessere Auflösung zeigt sich, dass Dürren weltweit deutlich häufiger auftreten, als es sich alleine in den GRACE-Satellitendaten niederschlägt. Viele räumlich begrenztere Dürren werden von den Satelliten nicht gesehen. Daher hat ein Team von Wissenschaftlern der Universität Bonn nun erstmals, gemeinsam mit Forschenden der Universität Frankfurt und aus Warschau, Satellitenmessungen mit hochauflösenden meteorologischen Daten kombiniert. Auf diese Weise konnte die Auflösung der resultierenden Karten der Wasserverteilung von etwa 300 Kilometer auf 50 Kilometer verbessert und somit granularer dargestellt werden. Dazu verwendeten die Forschenden das an der Universität Frankfurt entwickelte hydrologische Modell “WaterGAP” sowie ein mathematisches Verfahren, welches sonst in der Wettervorhersage Verwendung findet.

Schwerefeldänderungen durch Wassermassen

Das Satellitentandem GRACE (Gravity Recovery and Climate Experiment) hat von 2002 bis 2017 die Veränderungen der Erdanziehungskraft gemessen. Im Jahr 2018 startet das Folgeprojekt “GRACE-FO”. Diese Daten nutzten die Forschenden der Universität Bonn. Da die Erdanziehungskraft von Massenveränderungen abhängt, erlaubt dies wiederum Rückschlüsse auf den Wasserkreislauf nahe der Erdoberfläche. Veränderungen von Grundwasser- und Oberflächenspeichern oder die Gletscherschmelze wirken sich auf die Gravitation aus.

Höhere Präzision durch Methodenkombination

Als einzigartigen Vorteil der GRACE-Messung bezeichnen die Forschenden das Berücksichtigen aller Wasserspeicher, also auch Veränderungen von Grundwasservorkommen, die tief unter der Erdoberfläche verborgen sind, oder in zehntausenden von Stauseen oder Feuchtgebieten. Der Nachteil sei, dass die räumliche Auflösung der Schwerefelddaten aufgrund des Messprinzips mit etwa 300 bis 350 Kilometer vergleichsweise grob ist. Verlässliche Aussagen lassen sich daher nur für Gebiete von rund 100.000 Quadratkilometern Größe treffen. Zum Vergleich: Diese Mindestfläche ist größer als das größte Bundesland Bayern, das “nur” etwa 70.000 Quadratkilometer umfasst.

Globale hydrologische Modelle erlauben dagegen eine Auflösung von 50 Kilometern oder darunter. Sie nutzen meteorologische Messungen von Niederschlag, Temperatur und Strahlung sowie Karten der Landnutzung und Bodenbeschaffenheit und Informationen zur Wassernutzung unter anderem durch Industrie und Landwirtschaft. Hydrologische Modelle simulieren die Verdunstung sowie Veränderungen der Wasserspeicher in Böden und grundwasserführenden Schichten, Seen, Flüssen und Reservoirs. Ihr Nachteil besteht allerdings darin, dass diese Modelle die Wirklichkeit nur eingeschränkt nachbilden können, und dass meteorologische Messungen oft von systematischen Fehlern gekennzeichnet sind, erklären die Forscher. Etwa, wenn Daten zur Grundwasserentnahme nicht zur Verfügung gestellt werden.

Die Forschenden kombinierten nun erstmals Messungen der GRACE- und GRACE-FO-Satelliten mit dem hydrologischen “WaterGAP”-Modell, das wiederum hochauflösende meteorologische Daten integriert. Die Auflösung der resultierenden Karten der Wasserverteilung konnte auf 50 Kilometer gesteigert werden. Dazu verwendeten die Forschenden das mathematisches Verfahren der Datenassimilierung, das sonst in der Wettervorhersage Verwendung findet. Dabei haben die Wissenschaftlerinnen und Wissenschaftler nicht einfach nur die Ergebnisse des hydrologischen Modells und die Satellitendaten gemittelt.

Eintausend Messstationen für die Tests

Die Güte der aus den Satellitendaten und dem hydrologischen Modell kombinierten Karten der Wasserverteilung auf den Kontinenten testeten die Forschenden anhand von rund 1000 Messstationen. Generell zeige sich, dass die kombinierten Daten besser zu den Messungen passen, als die rein auf den GRACE-Satellitendaten oder nur auf dem hydrologischen Modell basierenden Berechnungen.

Beteiligte Institutionen und Finanzierung:

Neben der Universität Bonn sind das Institut für Physische Geographie der Universität Frankfurt, das Senckenberg Leibniz Biodiversity and Climate Research Centre Frankfurt und die Faculty of Civil Engineering and Geodesy der Military University of Technology in Warschau (Polen) beteiligt. Das Bundesministerium für Bildung und Forschung (BMBF) und die Deutsche Forschungsgemeinschaft (DFG) förderten die Studie finanziell. 

Originalpublikation:

Helena Gerdener, Jürgen Kusche, Kerstin Schulze, Petra Döll, Anna Klos: The global land water storage data set release 2 (GLWS2.0) derived via assimilating GRACE and GRACE-FO data into a global hydrological model, Journal of Geodesy, DOI: 10.1007/s00190-023-01763-9; Internet: https://link.springer.com/article/10.1007/s00190-023-01763-9

Beitragsfoto Helena Gerdener

Hinterlasse jetzt einen Kommentar

Was meinen Sie dazu?

Diese Website verwendet Akismet, um Spam zu reduzieren. Erfahre mehr darüber, wie deine Kommentardaten verarbeitet werden.